Study of a double bubbler for material balance in liquids | |
Hugues Lambert | |
关键词: density; depth; mass balance; bubble; bubbler; | |
DOI : 10.2172/1097166 RP-ID : INL/EXT-13-29609 PID : OSTI ID: 1097166 |
|
美国|英语 | |
来源: SciTech Connect | |
【 摘 要 】
The objective of this project was to determine the potential of a double bubbler to measure density and fluid level of the molten salt contained in an electrorefiner. Such in-situ real-time measurements can provide key information for material balances in the pyroprocessing of the nuclear spent fuel. This theoretical study showed this technique has a lot of promise. Four different experiments were designed and performed. The first three experiments studied the influence of a variety of factors such as depth difference between the two tubes, gas flow rate, the radius of the tubes and determining the best operating conditions. The last experiment purpose was to determine the precision and accuracy of the apparatus during specific conditions. The elected operating conditions for the characterization of the system were a difference of depth of 25 cm and a flow rate of 55 ml/min in each tube. The measured densities were between 1,000 g/l and 1,400g/l and the level between 34cm and 40 cm. The depth difference between the tubes is critical, the larger, the better. The experiments showed that the flow rate should be the same in each tube. The concordances with theoretical predictions were very good. The density precision was very satisfying (spread<0.1%) and the accuracy was about 1%. For the level determination, the precision was also very satisfying (spread<0.1%), but the accuracy was about 3%. However, those two biases could be corrected with calibration curves. In addition to the aqueous systems studied in the present work, future work will focus on examining the behavior of the double bubbler instrumentation in molten salt systems. The two main challenges which were identified in this work are the effect of the temperature and the variation of the superficial tension.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO201704180001561LZ | 2795KB | download |