| CREEP AND CREEP-FATIGUE OF ALLOY 617 WELDMENTS | |
| Wright, Jill ; Carroll, Laura ; Wright, Richard | |
| 关键词: Creep Alloy 617; | |
| DOI : 10.2172/1168621 RP-ID : INL/EXT-14-32966 PID : OSTI ID: 1168621 |
|
| 学科分类:核能源与工程 | |
| 美国|英语 | |
| 来源: SciTech Connect | |
PDF
|
|
【 摘 要 】
The Very High Temperature Reactor (VHTR) Intermediate Heat Exchanger (IHX) may be joined to piping or other components by welding. Creep-fatigue deformation is expected to be a predominant failure mechanism of the IHX1 and thus weldments used in its fabrication will experience varying cyclic stresses interrupted by periods of elevated temperature deformation. These periods of elevated temperature deformation are greatly influenced by a materials??? creep behavior. The nickel-base solid solution strengthened alloy, Alloy 617, is the primary material candidate for a VHTR-type IHX, and it is expected that Alloy 617 filler metal will be used for welds. Alloy 617 is not yet been integrated into Section III of the Boiler and Pressure Vessel Code, however, nuclear component design with Alloy 617 requires ASME (American Society of Mechanical Engineers) Code qualification. The Code will dictate design for welded construction through significant performance reductions. Despite the similar compositions of the weldment and base material, significantly different microstructures and mechanical properties are inevitable. Experience of nickel alloy welds in structural applications suggests that most high temperature failures occur at the weldments or in the heat-affected zone. Reliably guarding against this type of failure is particularly challenging at high temperatures due to the variations in the inelastic response of the constituent parts of the weldment (i.e., weld metal, heat-affected zone, and base metal) [ref]. This work focuses on the creep-fatigue behavior of nickel-based weldments, a need noted during the development of the draft Alloy 617 ASME Code Case. An understanding of Alloy 617 weldments when subjected to this important deformation mode will enable determination of the appropriate design parameters associated with their use. Specifically, the three main areas emphasized are the performance reduction due to a weld discontinuity in terms of the reduced number of the cycles to failure and whether a saturation in reduced cycle life with increased hold times is observed, the microstructural stability over long cycle times, and finally, the location of the generated weldment data on a creep-fatigue damage diagram (D-diagram).
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| 128KB | HTML |
PDF