Single-Volume Neutron Scatter Camera for High-Efficiency Neutron Imaging and Source Characterization. Year 2 of 3 Summary | |
Brubaker, Erik1  | |
[1] Sandia National Lab. (SNL-CA), Livermore, CA (United States) | |
关键词: FAST NEUTRONS; ENERGY RESOLUTION; EFFICIENCY; NEUTRON DETECTION; FISSION NEUTRONS; SECURITY; NEUTRON SPECTROMETERS; ARMS CONTROL; FISSIONABLE MATERIALS; DETECTION; TREATIES; VERIFICATION; SCINTILLATION COUNTERS; | |
DOI : 10.2172/1225830 RP-ID : SAND--2015-9480R PID : OSTI ID: 1225830 Others : Other: 607747 |
|
美国|英语 | |
来源: SciTech Connect | |
【 摘 要 】
The neutron scatter camera (NSC), an imaging spectrometer for fission energy neutrons, is an established and proven detector for nuclear security applications such as weak source detection of special nuclear material (SNM), arms control treaty verification, and emergency response. Relative to competing technologies such as coded aperture imaging, time-encoded imaging, neutron time projection chamber, and various thermal neutron imagers, the NSC provides excellent event-by-event directional information for signal/background discrimination, reasonable imaging resolution, and good energy resolution. Its primary drawback is very low detection efficiency due to the requirement for neutron elastic scatters in two detector cells. We will develop a singlevolume double-scatter neutron imager, in which both neutron scatters can occur in the same large active volume. If successful, the efficiency will be dramatically increased over the current NSC cell-based geometry. If the detection efficiency approaches that of e.g. coded aperture imaging, the other inherent advantages of double-scatter imaging would make it the most attractive fast neutron detector for a wide range of security applications.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
42KB | download |