科技报告详细信息
High Radiation Environment Nuclear Fragment Separator Magnet
Kahn, Stephen1  Gupta, Ramesh2 
[1]Muons, Inc., Batavia, IL (United States)
[2]Brookhaven National Lab. (BNL), Upton, NY (United States)
关键词: HTS;    40 K;    YBCO;    Dipole;    magnet;    high-radiation;    FRIB;    fragment separator;   
DOI  :  10.2172/1236414
RP-ID  :  DOE-MUONS--06273
PID  :  OSTI ID: 1236414
Others  :  Other: 7578706943
美国|英语
来源: SciTech Connect
PDF
【 摘 要 】
Superconducting coils wound with HTS conductor can be used in magnets located in a high radiation environment. NbTi and Nb3Sn superconductors must operate at 4.5 K or below where removal of heat is less efficient. The HTS conductor can carry significant current at higher temperatures where the Carnot efficiency is significantly more favorable and where the coolant heat capacity is much larger. Using the HTS conductor the magnet can be operated at 40 K. This project examines the use of HTS conductor for the Michigan State University Facility For Rare Isotope Beams (FRIB) fragment separator dipole magnet which bends the beam by 30?�� and is located in a high radiation region that will not be easily accessible. Two of these magnets are needed to select the chosen isotope. There are a number of technical challenges to be addressed in the design of this magnet. The separator dipole is 2 m long and subtends a large angle. The magnet should keep a constant transverse field profile along its beam reference path. Winding coils with a curved inner segment is difficult as the conductor will tend to unwind during the process. In the Phase I project two approaches to winding the conductor were examined. The first was to wind the coils with curved sections on the inner and outer segments with the inner segment wound with negative curvature. The alternate approach was to use a straight segment on the inner segment to avoid negative curvature. In Phase I coils with a limited number of turns were successfully wound and tested at 77 K for both coil configurations. The Phase II program concentrated on the design, coil winding procedures, structural analysis, prototyping and testing of an HTS curved dipole coil at 40 K with a heat load representative of the radiation environment. One of the key criteria of the design of this magnet is to avoid the use of organic materials that would degrade rapidly in radiation. The Lorentz forces expected from the coils interacting with the magnetic field are large and in order minimize the deformation of the coils, mechanical support must be provided. Since the support structure cannot be made of organic materials with minimal thermal conductivity, an optimization was explored comparing the amount of coil deformation that can be tolerated and the amount of heat leakage that can be endured. A test coil containing 500 m of HTS was constructed to be tested at the 40 K operating temperature. The anticipated heat load was simulated with heater strips to demonstrate that the heat could be removed and that the coil can operate in a stable state. The FRIB project has decided that using HTS coils for this magnet was too risky considering their time and funding constraints and has opted for a more conservative approach with conventional coils. As an outcome of this STTR project, it is likely that HTS coils operating at higher temperatures will have beneficial applications for future accelerator projects.
【 预 览 】
附件列表
Files Size Format View
5214KB PDF download
  文献评价指标  
  下载次数:9次 浏览次数:36次