期刊论文详细信息
JOURNAL OF BIOMECHANICS 卷:45
Initiation and progression of mechanical damage in the intervertebral disc under cyclic loading using continuum damage mechanics methodology: A finite element study
Article
Qasim, Muhammad2  Natarajan, Raghu N.1,2  An, Howard S.2  Andersson, Gunnar B. J.2 
[1] Rush Univ, Med Ctr, Dept Orthoped Surg, Chicago, IL 60612 USA
[2] Univ Illinois, Dept Bioengn, Chicago, IL USA
关键词: Lumbar spine;    Disc degeneration;    Fatigue failure;    Finite element modelling;    Continuum damage mechanics;   
DOI  :  10.1016/j.jbiomech.2012.05.022
来源: Elsevier
PDF
【 摘 要 】

It is difficult to study the breakdown of disc tissue over several years of exposure to bending and lifting by experimental methods. There is also no finite element model that elucidates the failure mechanism due to repetitive loading of the lumbar motion segment. The aim of this study was to refine an already validated poro-elastic finite element model of lumbar motion segment to investigate the initiation and progression of mechanical damage in the disc under simple and complex cyclic loading conditions. Continuum damage mechanics methodology was incorporated into the finite element model to track the damage accumulation in the annulus in response to the repetitive loading. The analyses showed that the damage initiated at the posterior inner annulus adjacent to the endplates and propagated outwards towards its periphery under all loading conditions simulated. The damage accumulated preferentially in the posterior region of the annulus. The analyses also showed that the disc failure is unlikely to happen with repetitive bending in the absence of compressive load. Compressive cyclic loading with low peak load magnitude also did not create the failure of the disc. The finite element model results were consistent with the experimental and clinical observations in terms of the region of failure, magnitude of applied loads and the number of load cycles survived. (C) 2012 Elsevier Ltd. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jbiomech_2012_05_022.pdf 910KB PDF download
  文献评价指标  
  下载次数:2次 浏览次数:0次