| JOURNAL OF BIOMECHANICS | 卷:41 |
| In situ friction measurement on murine cartilage by atomic force microscopy | |
| Article | |
| Coles, Jeffrey M.1,5  Blum, Jason J.1  Jay, Gregory D.2,3  Darling, Eric M.4,5  Guilak, Farshid4,5  Zauscher, Stefan1,5  | |
| [1] Duke Univ, Dept Mech Engn & Mat Sci, Durham, NC 27706 USA | |
| [2] Brown Univ, Dept Emergency Med, Providence, RI 02912 USA | |
| [3] Brown Univ, Div Engn, Providence, RI 02912 USA | |
| [4] Duke Univ, Med Ctr, Dept Surg, Durham, NC 27706 USA | |
| [5] Duke Univ, Ctr Biomol & Tissue Engn, Durham, NC 27706 USA | |
| 关键词: scanning probe microscopy; boundary lubrication; lubricin; tribology; | |
| DOI : 10.1016/j.jbiomech.2007.10.013 | |
| 来源: Elsevier | |
PDF
|
|
【 摘 要 】
Articular cartilage provides a low-friction, wear-resistant surface for the motion of diarthrodial joints. The objective of this study was to develop a method for in situ friction measurement of murine cartilage using a colloidal probe attached to the cantilever of an atomic force microscope. Sliding friction was measured between a chemically functionalized microsphere and the cartilage of the murine femoral head. Friction was measured at normal loads ranging incrementally from 20 to 100nN with a sliding speed of 40 mu m/s and sliding distance of 64 mu m. Under these test conditions, hydrostatic pressurization and biphasic load support in the cartilage were minimized, providing frictional measurements that predominantly reflect boundary lubrication properties. Friction coefficients measured on murine tissue (0.25 +/- 0.11) were similar to those measured on porcine tissue (0.23 +/- 0.09) and were in general agreement with measurements of boundary friction on cartilage by other researchers. Using the colloidal probe as an indenter, the elastic mechanical properties and surface roughness were measured in the same configuration. Interfacial shear was found to be the principal mechanism of friction generation, with little to no friction resulting from plowing forces, collision forces, or energy losses due to normal deformation. This measurement technique can be applied to future studies of cartilage friction and mechanical properties on genetically altered mice or other small animals. (c) 2007 Elsevier Ltd. All rights reserved.
【 授权许可】
Free
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| 10_1016_j_jbiomech_2007_10_013.pdf | 521KB |
PDF