| JOURNAL OF BIOMECHANICS | 卷:48 |
| Two-way ANOVA for scalar trajectories, with experimental evidence of non-phasic interactions | |
| Article | |
| Pataky, Todd C.1  Vanrenterghem, Jos2  Robinson, Mark A.2  | |
| [1] Shinshu Univ, Dept Bioengn, Matsumoto, Nagano, Japan | |
| [2] Liverpool John Moores Univ, Res Inst Sport & Exercise Sci, Liverpool L3 5UX, Merseyside, England | |
| 关键词: Kinematics; Statistical parametric mapping; Random field theory; Time series analysis; | |
| DOI : 10.1016/j.jbiomech.2014.10.013 | |
| 来源: Elsevier | |
PDF
|
|
【 摘 要 】
Kinematic and force trajectories are often normalized in time, with mean and variance summary statistic trajectories reported. It has been shown elsewhere, for simple one-factor experiments, that statistical testing can be conducted directly on those summary statistic trajectories using Random Field Theory (RFT). This technical note describes how RFT extends to two-factor designs, and how bizarre non-phasic interactions can occur in multi-factor experiments. We reanalyzed a public dataset detailing stance phase knee flexion during walking in (a) patellofemoral pain vs. controls, and (b) females vs. males using both a full model (with interaction effect) and a main-effects-only model. In both models the main effect of PAIN failed to reach significance at alpha=0.05. The main effect of GENDER reached significance over 5-40% stance (p=0.0005), but only for the full model. The interaction effect (in the full model) reached significance over 0-15% of stance (p=0.030), and resulted from greater flexion in females but decreased flexion in males in PFP vs. controls. Thus there was a non-phasic interaction in which a non-significant interaction (over 20-40% stance) suppressed the main effect of GENDER. Similarly, if we had only analyzed 20-40% stance, we would have committed Type II error by failing to reject the null PAIN-GENDER interaction hypothesis. The possible presence of non-phasic interactions implies that trajectory analyses must be conducted at the whole-trajectory level, because a failure to do so will generally miss non-phasic interactions if present. (C) 2014 Elsevier Ltd. All rights reserved.
【 授权许可】
Free
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| 10_1016_j_jbiomech_2014_10_013.pdf | 577KB |
PDF