期刊论文详细信息
JOURNAL OF APPROXIMATION THEORY 卷:173
Approximation by multivariate Bernstein-Durrmeyer operators and learning rates of least-squares regularized regression with multivariate polynomial kernels
Article
Li, Bing-Zheng
关键词: Approximation;    Learning theory;    Reproducing kernel Hilbert space;    Polynomial kernel;    Regularization error;    Bernstein-Durrmeyer operators;    Covering number;    Regularization scheme;   
DOI  :  10.1016/j.jat.2013.04.007
来源: Elsevier
PDF
【 摘 要 】

In this paper, we establish error bounds for approximation by multivariate Bernstein-Durrmeyer operators in L-rho X(p) (1 <= p < infinity) with respect to a general Borel probability measure rho x on a simplex X subset of R-n. By the error bounds, we provide convergence rates of type O (m(-gamma)) with some gamma > 0 for the least-squares. regularized regression algorithm associated with a multivariate polynomial kernel (where in is the sample size). The learning rates depend on the space dimension a and the capacity of the reproducing kernel Hilbert space generated by the polynomial kernel. (C) 2013 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jat_2013_04_007.pdf 278KB PDF download
  文献评价指标  
  下载次数:6次 浏览次数:0次