期刊论文详细信息
JOURNAL OF APPROXIMATION THEORY 卷:241
Best polynomial approximation on the triangle
Article
Feng, Han1  Krattenthaler, Christian2  Xu, Yuan3 
[1] City Univ Hong Kong Kowloon, Dept Math, Hong Kong, Peoples R China
[2] Univ Wien, Fak Math, Oskar Morgenstern Pl 1, A-1090 Vienna, Austria
[3] Univ Oregon, Dept Math, Eugene, OR 97403 USA
关键词: Best polynomial approximation;    Orthogonal expansion;    Triangle;    K-functional;   
DOI  :  10.1016/j.jat.2019.01.005
来源: Elsevier
PDF
【 摘 要 】

Let E-n(f)(alpha,beta,gamma) denote the error of best approximation by polynomials of degree at most n in the space L-2 ((omega) over bar (alpha,beta,gamma)) on the triangle {(x, y) : x, y >= 0, x + y <= 1}, where (omega) over bar (alpha,beta,gamma) (x, y) := x(alpha) y(beta) (1 - x - y)(gamma )for alpha, beta, gamma > -1. Our main result gives a sharp estimate of E-n (f)(alpha,beta,gamma) in terms of the error of best approximation for higher order derivatives of f in appropriate Sobolev spaces. The result also leads to a characterization of E-n (f)(alpha,beta,gamma) by a weighted K-functional. (C) 2019 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jat_2019_01_005.pdf 316KB PDF download
  文献评价指标  
  下载次数:7次 浏览次数:0次