| JOURNAL OF APPROXIMATION THEORY | 卷:241 |
| Best polynomial approximation on the triangle | |
| Article | |
| Feng, Han1  Krattenthaler, Christian2  Xu, Yuan3  | |
| [1] City Univ Hong Kong Kowloon, Dept Math, Hong Kong, Peoples R China | |
| [2] Univ Wien, Fak Math, Oskar Morgenstern Pl 1, A-1090 Vienna, Austria | |
| [3] Univ Oregon, Dept Math, Eugene, OR 97403 USA | |
| 关键词: Best polynomial approximation; Orthogonal expansion; Triangle; K-functional; | |
| DOI : 10.1016/j.jat.2019.01.005 | |
| 来源: Elsevier | |
PDF
|
|
【 摘 要 】
Let E-n(f)(alpha,beta,gamma) denote the error of best approximation by polynomials of degree at most n in the space L-2 ((omega) over bar (alpha,beta,gamma)) on the triangle {(x, y) : x, y >= 0, x + y <= 1}, where (omega) over bar (alpha,beta,gamma) (x, y) := x(alpha) y(beta) (1 - x - y)(gamma )for alpha, beta, gamma > -1. Our main result gives a sharp estimate of E-n (f)(alpha,beta,gamma) in terms of the error of best approximation for higher order derivatives of f in appropriate Sobolev spaces. The result also leads to a characterization of E-n (f)(alpha,beta,gamma) by a weighted K-functional. (C) 2019 Elsevier Inc. All rights reserved.
【 授权许可】
Free
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| 10_1016_j_jat_2019_01_005.pdf | 316KB |
PDF