JOURNAL OF APPROXIMATION THEORY | 卷:225 |
Metric entropy, n-widths, and sampling of functions on manifolds | |
Article | |
Ehler, Martin1  Filbir, Frank2,3  | |
[1] Univ Vienna, Dept Math, Oskar Morgenstern Pl 1, A-1090 Vienna, Austria | |
[2] Tech Univ Miinchen, Fac Math, Boltzmannstr 3, D-85748 Garching, Germany | |
[3] Helmholtz Zentrum Munchen, Ingolstadter Landstr 1, D-85764 Neuherberg, Germany | |
关键词: Diffusion measure space; Diffusion polynomials; Sampling; Metric entropy; | |
DOI : 10.1016/j.jat.2017.09.001 | |
来源: Elsevier | |
【 摘 要 】
We first investigate on the asymptotics of the Kolmogorov metric entropy and nonlinear n-widths of approximation spaces on some function classes on manifolds and quasi-metric measure spaces. Secondly, we develop constructive algorithms to represent those functions within a prescribed accuracy. The constructions can be based on either spectral information or scattered samples of the target function. Our algorithmic scheme is asymptotically optimal in the sense of nonlinear n-widths and asymptotically optimal up to a logarithmic factor with respect to the metric entropy. (C) 2017 Elsevier Inc. All rights reserved.
【 授权许可】
Free
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
10_1016_j_jat_2017_09_001.pdf | 358KB | download |