期刊论文详细信息
JOURNAL OF APPROXIMATION THEORY 卷:225
Metric entropy, n-widths, and sampling of functions on manifolds
Article
Ehler, Martin1  Filbir, Frank2,3 
[1] Univ Vienna, Dept Math, Oskar Morgenstern Pl 1, A-1090 Vienna, Austria
[2] Tech Univ Miinchen, Fac Math, Boltzmannstr 3, D-85748 Garching, Germany
[3] Helmholtz Zentrum Munchen, Ingolstadter Landstr 1, D-85764 Neuherberg, Germany
关键词: Diffusion measure space;    Diffusion polynomials;    Sampling;    Metric entropy;   
DOI  :  10.1016/j.jat.2017.09.001
来源: Elsevier
PDF
【 摘 要 】

We first investigate on the asymptotics of the Kolmogorov metric entropy and nonlinear n-widths of approximation spaces on some function classes on manifolds and quasi-metric measure spaces. Secondly, we develop constructive algorithms to represent those functions within a prescribed accuracy. The constructions can be based on either spectral information or scattered samples of the target function. Our algorithmic scheme is asymptotically optimal in the sense of nonlinear n-widths and asymptotically optimal up to a logarithmic factor with respect to the metric entropy. (C) 2017 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jat_2017_09_001.pdf 358KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次