期刊论文详细信息
JOURNAL OF APPROXIMATION THEORY 卷:271
On (β, γ)-Chebyshev functions and points of the interval
Article
De Marchi, Stefano1  Elefante, Giacomo2  Marchetti, Francesco1 
[1] Univ Padua, Dipartimento Matemat Tullio Levi Civita, Padua, Italy
[2] Univ G dAnnunzio, Dipartimento Ingn & Geol, Pescara, Italy
关键词: Chebyshev polynomials;    Chebyshev points;    Generalized Chebyshev points;    Lebesgue constant;   
DOI  :  10.1016/j.jat.2021.105634
来源: Elsevier
PDF
【 摘 要 】

In this paper, we introduce the class of (beta, gamma)-Chebyshev functions and corresponding points, which can be seen as a family of generalized Chebyshev polynomials and points. For the (beta, gamma)-Chebyshev functions, we prove that they are orthogonal in certain subintervals of [-1, 1] with respect to a weighted arc-cosine measure. In particular we investigate the cases where they become polynomials, deriving new results concerning classical Chebyshev polynomials of first kind. Besides, we show that subsets of Chebyshev and Chebyshev-Lobatto points are instances of (beta, gamma)-Chebyshev points. We also study the behavior of the Lebesgue constants of the polynomial interpolant at these points on varying the parameters beta and gamma. (C) 2021 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jat_2021_105634.pdf 508KB PDF download
  文献评价指标  
  下载次数:6次 浏览次数:0次