期刊论文详细信息
JOURNAL OF APPROXIMATION THEORY 卷:164
A scheme for interpolation by Hankel translates of a basis function
Article
Arteaga, Cristian1  Marrero, Isabel1 
[1] Univ La Laguna, Dept Anal Matemat, San Cristobal la Laguna 38271, Tenerife, Spain
关键词: Basis function;    Bessel-Kingman hypergroup;    Besse' operator;    Hankel convolution;    Hankel translation;    Minimal norm interpolant;    Sobolev embedding theorem;   
DOI  :  10.1016/j.jat.2012.08.005
来源: Elsevier
PDF
【 摘 要 】

This work discusses interpolation of complex-valued functions defined on the positive real axis I by certain special subspaces, in a variational setting that follows the approach of Light and Wayne [W. Light, H. Wayne, Spaces of distributions, interpolation by translates of a basis function and error estimates, Numer. Math. 81 (1999) 415-450]. The set of interpolation points will be a subset {a(1), ... , a(n)} of I and the interpolants will take the form u(x) = Sigma(n)(i=1)alpha(i)(tau(ai)phi)(x) + Sigma(m-1)(j=0) beta(j)p(mu,j)(x) (x is an element of I), where mu >= -1/2, phi is a complex function defined on I (the so-called basis function), p(mu,j) (x) = x(2j+mu+1/2) (j is an element of Z(+), 0 <= j <= m - 1) is a Muntz monomial, tau(z) (z is an element of I) denotes the Hankel translation operator of order mu, and alpha(i), beta(j) (i, j is an element of Z(+), 1 <= i <= n, 0 <= j <= m - 1) are complex coefficients. An estimate for the pointwise error of these interpolants is given. Some numerical examples are included. (C) 2012 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jat_2012_08_005.pdf 417KB PDF download
  文献评价指标  
  下载次数:4次 浏览次数:1次