期刊论文详细信息
JOURNAL OF APPROXIMATION THEORY 卷:164
Convergence of non-periodic infinite products of orthogonal projections and nonexpansive operators in Hilbert space
Article
Pustylnik, Evgeniy1  Reich, Simeon1  Zaslavski, Alexander J.1 
[1] Technion Israel Inst Technol, Dept Math, IL-32000 Haifa, Israel
关键词: Fixed point;    Hilbert space;    Inclination;    Infinite product;    Nonexpansive operator;    Orthogonal projection;   
DOI  :  10.1016/j.jat.2012.01.001
来源: Elsevier
PDF
【 摘 要 】

We provide sufficient conditions for strong and uniform (on bounded subsets of initial points) convergence of infinite products of orthogonal projections and other (possibly nonlinear) nonexpansive operators in a Hilbert space. Our main tools are new estimates of the inclination of a finite tuple of closed linear subspaces. (C) 2012 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jat_2012_01_001.pdf 211KB PDF download
  文献评价指标  
  下载次数:3次 浏览次数:0次