期刊论文详细信息
JOURNAL OF APPROXIMATION THEORY 卷:114
Zeros of Sobolev orthogonal polynomials of Gegenbauer type
Article
Groenevelt, WGM
关键词: Sobolev orthogonal polynomials;    symmetrically coherent pairs;    zeros;    Gegenbauer polynomials;   
DOI  :  10.1006/jath.2001.3643
来源: Elsevier
PDF
【 摘 要 】

Let {S-n}(n) denote the monic orthogonal polynomial sequence with respect to the Sobolev inner product (S) = integral f(x) g(x) dpsi(0)(x) + lambda integral f(x) g(x) dpsi(1)(x), where lambda<0 and {dpsi(0), dpsi(1)}is a so-called symmetrically coherent pair, with With dpsi(0) or dpsi(1) the classical Gegenbauer measure (x(2)- 1)(alpha)dx, alpha>- 1. If dpsi(1) is the Gegenbauer measure, then S-n has n different, real zeros. If dpsi(0) is the Gegenbauer measure, then S-n has at least n-2 different, real zeros. Under certain conditions S-n has complex zeros. Also the location of the zeros of S-n with respect to Gegenbauer polynomials, is studied. (C) 2002 Elsevier Science (USA).

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1006_jath_2001_3643.pdf 170KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次