JOURNAL OF APPROXIMATION THEORY | 卷:114 |
Zeros of Sobolev orthogonal polynomials of Gegenbauer type | |
Article | |
Groenevelt, WGM | |
关键词: Sobolev orthogonal polynomials; symmetrically coherent pairs; zeros; Gegenbauer polynomials; | |
DOI : 10.1006/jath.2001.3643 | |
来源: Elsevier | |
【 摘 要 】
Let {S-n}(n) denote the monic orthogonal polynomial sequence with respect to the Sobolev inner product (S) = integral f(x) g(x) dpsi(0)(x) + lambda integral f(x) g(x) dpsi(1)(x), where lambda<0 and {dpsi(0), dpsi(1)}is a so-called symmetrically coherent pair, with With dpsi(0) or dpsi(1) the classical Gegenbauer measure (x(2)- 1)(alpha)dx, alpha>- 1. If dpsi(1) is the Gegenbauer measure, then S-n has n different, real zeros. If dpsi(0) is the Gegenbauer measure, then S-n has at least n-2 different, real zeros. Under certain conditions S-n has complex zeros. Also the location of the zeros of S-n with respect to Gegenbauer polynomials, is studied. (C) 2002 Elsevier Science (USA).
【 授权许可】
Free
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
10_1006_jath_2001_3643.pdf | 170KB | download |