期刊论文详细信息
JOURNAL OF APPROXIMATION THEORY 卷:204
Proof of a conjecture of Granath on optimal bounds of the Landau constants
Article
Zhao, Chun-Ru1  Long, Wen-Gao1  Zhao, Yu-Qiu1 
[1] Sun Yat Sen Univ, Dept Math, Guangzhou 510275, Guangdong, Peoples R China
关键词: Landau constants;    Second-order linear difference equation;    Sharper bound;    Asymptotic expansion;    Hypergeometric function;   
DOI  :  10.1016/j.jat.2015.12.004
来源: Elsevier
PDF
【 摘 要 】

We study the asymptotic expansion for the Landau constants G(n), pi G(n) similar to ln(16N) + gamma + Sigma(infinity)(k=1) alpha(k)/N-k as n -> infinity, where N = n+1, and gamma is Euler's constant. We show that the signs of the coefficients alpha(k) demonstrate a periodic behavior such that (-1)(l(l+1)/2) alpha(l+1) < 0 for all l. We further prove a conjecture of Granath which states that (-1)(l(l+1)/2) epsilon(l)(N) < 0 for l = 0, 1, 2,... and n = 0, 1, 2,..., epsilon(l)(N) being the error due to truncation at the lth order term. Consequently, we also obtain the sharp bounds up to arbitrary orders of the form ln(16N) + gamma + Sigma(p)(k=1) alpha(k)/N-k < pi G(n) < ln(16N) + gamma + Sigma(q)(k=1) alpha(k)/N-k for all n = 0, 1, 2,..., all p = 4s+1, 4s+2 and q = 4m, 4m+3, with s = 0,1, 2,... and m = 0,1, 2,... (C) 2016 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jat_2015_12_004.pdf 279KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次