期刊论文详细信息
JOURNAL OF APPROXIMATION THEORY 卷:192
Bilinear fractal interpolation and box dimension
Article
Barnsley, Michael F.1  Massopust, Peter R.2,3 
[1] Australian Natl Univ, Inst Math Sci, Canberra, ACT, Australia
[2] Tech Univ Munich, Res Unit M6, Ctr Math, D-85747 Garching, Germany
[3] Helmholtz Zentrum Munchen, D-8764 Neuherberg, Germany
关键词: Iterated function system (IFS);    Attractor;    Fractal interpolation;    Read-Bajraktarevic operator;    Bilinear mapping;    Bilinear IFS;    Box counting dimension;   
DOI  :  10.1016/j.jat.2014.10.014
来源: Elsevier
PDF
【 摘 要 】

In the context of general iterated function systems (IFSs), we introduce bilinear fractal interpolants as the fixed points of certain Read Bajraktarevic operators. By exhibiting a generalized taxi-cab metric, we show that the graph of a bilinear fractal interpolant is the attractor of an underlying contractive bilinear IFS. We present an explicit formula for the box-counting dimension of the graph of a bilinear fractal interpolant in the case of equally spaced data points. (C) 2014 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jat_2014_10_014.pdf 432KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次