期刊论文详细信息
| JOURNAL OF APPROXIMATION THEORY | 卷:192 |
| Bilinear fractal interpolation and box dimension | |
| Article | |
| Barnsley, Michael F.1  Massopust, Peter R.2,3  | |
| [1] Australian Natl Univ, Inst Math Sci, Canberra, ACT, Australia | |
| [2] Tech Univ Munich, Res Unit M6, Ctr Math, D-85747 Garching, Germany | |
| [3] Helmholtz Zentrum Munchen, D-8764 Neuherberg, Germany | |
| 关键词: Iterated function system (IFS); Attractor; Fractal interpolation; Read-Bajraktarevic operator; Bilinear mapping; Bilinear IFS; Box counting dimension; | |
| DOI : 10.1016/j.jat.2014.10.014 | |
| 来源: Elsevier | |
PDF
|
|
【 摘 要 】
In the context of general iterated function systems (IFSs), we introduce bilinear fractal interpolants as the fixed points of certain Read Bajraktarevic operators. By exhibiting a generalized taxi-cab metric, we show that the graph of a bilinear fractal interpolant is the attractor of an underlying contractive bilinear IFS. We present an explicit formula for the box-counting dimension of the graph of a bilinear fractal interpolant in the case of equally spaced data points. (C) 2014 Elsevier Inc. All rights reserved.
【 授权许可】
Free
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| 10_1016_j_jat_2014_10_014.pdf | 432KB |
PDF