期刊论文详细信息
JOURNAL OF APPROXIMATION THEORY 卷:258
Atomic norm minimization for decomposition into complex exponentials and optimal transport in Fourier domain
Article
Condat, Laurent1 
[1] King Abdullah Univ Sci & Technol KAUST, Visual Comp Ctr, Thuwal, Saudi Arabia
关键词: Atomic norm;    Infinite dictionary;    Truncated moment problem;    Trigonometric moments;    Total variation norm;    Super-resolution;    Optimal transport;   
DOI  :  10.1016/j.jat.2020.105456
来源: Elsevier
PDF
【 摘 要 】

This paper is devoted to the decomposition of vectors into sampled complex exponentials; or, equivalently, to the information over discrete measures captured in a finite sequence of their Fourier coefficients. We study existence, uniqueness, and cardinality properties, as well as computational aspects of estimation using convex semidefinite programs. We then explore optimal transport between measures, of which only a finite sequence of Fourier coefficients is known. (C) 2020 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jat_2020_105456.pdf 514KB PDF download
  文献评价指标  
  下载次数:8次 浏览次数:2次