期刊论文详细信息
JOURNAL OF APPROXIMATION THEORY 卷:182
Optimal recovery of isotropic classes of twice-differentiable functions defined on d-dimensional Euclidean space
Article
Ling, Bo1  Liu, Yongping1 
[1] Beijing Normal Univ, Sch Math Sci, Lab Math & Complex Syst, Minist Educ, Beijing 100875, Peoples R China
关键词: Optimal recovery;    Differentiable function;    Optimal covering;    Discrete geometry;   
DOI  :  10.1016/j.jat.2014.03.005
来源: Elsevier
PDF
【 摘 要 】

In the paper, inspired by the works of V. F. Babenko, S. V. Borodachov and D. S. Skorokhodov, we consider the problem of optimal recovery of isotropic classes of twice-differentiable multivariate functions defined on Euclidean space R-d, and get some exact results. This problem is connected with the optimal covering of Rd in discrete geometry. What Babenko et al. considered is the same kind of the optimal recovery problem of an isotropic class of twice-differentiable multivariate functions defined on a compact set of R-d and an isotropic class of twice-differentiable periodic functions. (C) 2014 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jat_2014_03_005.pdf 208KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次