期刊论文详细信息
JOURNAL OF APPROXIMATION THEORY 卷:122
Laguerre-Sobolev orthogonal polynomials:: asymptotics for coherent pairs of type II
Article
Alfaro, M ; Moreno-Balcázar, JJ ; Rezola, ML
关键词: Sobolev orthogonal polynomials;    Laguerre polynomials;    asymptotics;    zeros;   
DOI  :  10.1016/S0021-9045(03)00034-0
来源: Elsevier
PDF
【 摘 要 】

Let S-n be polynomials orthogonal with respect to the inner product (f,g)(s) = integral(0)(infinity) fgdmu(0) + lambda integral(0)(infinity) f'g'dmu(1), where dmu(0) = x(alpha)e(-x) dx, dmu(1) = x(alpha+1)e(-x)/x-xi dx + Mdelta(xi) with alpha > - 1, xi less than or equal to 0, M greater than or equal to 0, and lambda > 0. A strong asymptotic on (0, infinity), a Mehler-Heine type formula, a Plancherel-Rotach type exterior asymptotic as well as an upper estimate for S-n are obtained. As a consequence, we give asymptotic results for the zeros and critical points of S-n and the distribution of contracted zeros. Some numerical examples are shown. (C) 2003 Elsevier Science (USA). All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_S0021-9045(03)00034-0.pdf 210KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次