JOURNAL OF APPROXIMATION THEORY | 卷:122 |
Laguerre-Sobolev orthogonal polynomials:: asymptotics for coherent pairs of type II | |
Article | |
Alfaro, M ; Moreno-Balcázar, JJ ; Rezola, ML | |
关键词: Sobolev orthogonal polynomials; Laguerre polynomials; asymptotics; zeros; | |
DOI : 10.1016/S0021-9045(03)00034-0 | |
来源: Elsevier | |
【 摘 要 】
Let S-n be polynomials orthogonal with respect to the inner product (f,g)(s) = integral(0)(infinity) fgdmu(0) + lambda integral(0)(infinity) f'g'dmu(1), where dmu(0) = x(alpha)e(-x) dx, dmu(1) = x(alpha+1)e(-x)/x-xi dx + Mdelta(xi) with alpha > - 1, xi less than or equal to 0, M greater than or equal to 0, and lambda > 0. A strong asymptotic on (0, infinity), a Mehler-Heine type formula, a Plancherel-Rotach type exterior asymptotic as well as an upper estimate for S-n are obtained. As a consequence, we give asymptotic results for the zeros and critical points of S-n and the distribution of contracted zeros. Some numerical examples are shown. (C) 2003 Elsevier Science (USA). All rights reserved.
【 授权许可】
Free
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
10_1016_S0021-9045(03)00034-0.pdf | 210KB | download |