期刊论文详细信息
JOURNAL OF APPROXIMATION THEORY 卷:268
Geometric computation of Christoffel functions on planar convex domains
Article
Prymak, A.1 
[1] Univ Manitoba, Dept Math, Winnipeg, MB R3T 2N2, Canada
关键词: Christoffel function;    Algebraic polynomials;    Orthogonal polynomials;    Boundary effect;   
DOI  :  10.1016/j.jat.2021.105603
来源: Elsevier
PDF
【 摘 要 】

For an arbitrary planar convex domain, we compute the behavior of Christoffel function up to a constant factor using comparison with other simple reference domains. The lower bound is obtained by constructing an appropriate ellipse contained in the domain, while for the upper bound an appropriate parallelogram containing the domain is constructed. As an application we obtain a new proof that every planar convex domain possesses optimal polynomial meshes. (C) 2021 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jat_2021_105603.pdf 408KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次