JOURNAL OF ALLOYS AND COMPOUNDS | 卷:700 |
Two-temperature model in molecular dynamics simulations of cascades in Ni-based alloys | |
Article | |
Zarkadoula, Eva1  Samolyuk, German1  Weber, William J.1,2  | |
[1] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA | |
[2] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA | |
关键词: Molecular dynamics; Two-temperature model; Electronic effects; Nickel-based alloys; Cascades; | |
DOI : 10.1016/j.jallcom.2016.12.441 | |
来源: Elsevier | |
【 摘 要 】
In high-energy irradiation events, energy from the fast moving ion is transferred to the system via nuclear and electronic energy loss mechanisms. The nuclear energy loss results in the creation of point defects and clusters, while the energy transferred to the electrons results in the creation of high electronic temperatures, which can affect the damage evolution. We perform molecular dynamics simulations of 30 keV and 50 keV Ni ion cascades in nickel-based alloys without and with the electronic effects taken into account. We compare the results of classical molecular dynamics (MD) simulations, where the electronic effects are ignored, with results from simulations that include the electronic stopping only, as well as simulations where both the electronic stopping and the electron-phonon coupling are incorporated, as described by the two temperature model (2T-MD). Our results indicate that the 2T-MD leads to a smaller amount of damage, more isolated defects and smaller defect clusters. (C) 2017 Elsevier B.V. All rights reserved.
【 授权许可】
Free
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
10_1016_j_jallcom_2016_12_441.pdf | 1793KB | download |