期刊论文详细信息
JOURNAL OF ALLOYS AND COMPOUNDS 卷:615
Structural evolution upon decomposition of the LiAlH4 + LiBH4 system
Article; Proceedings Paper
Soru, S.1,2  Taras, A.1,2  Pistidda, C.3  Milanese, C.4,5  Minella, C. Bonatto6  Masolo, E.1,2  Nolis, P.9,10  Baro, M. D.7  Marini, A.4,5  Tolkiehn, M.8  Domheim, M.3  Enzo, S.1,2  Mulas, G.1,2  Garroni, S.1,2 
[1] Univ Sassari, Dept Chem & Pharm, I-07100 Sassari, Italy
[2] INSTM, I-07100 Sassari, Italy
[3] Helmholtz Zentrum Geesthacht, Inst Mat Res, D-21502 Geesthacht, Germany
[4] Univ Pavia, CSGI, Pavia Lab H2, I-27100 Pavia, Italy
[5] Univ Pavia, Sez Chim Fis, Dipartimento Chim, I-27100 Pavia, Italy
[6] IFW Dresden, Inst Metall Mat, D-01069 Dresden, Germany
[7] Univ Autonoma Barcelona, Dept Fis, E-08193 Bellaterra, Spain
[8] DESY Synchrotron, Hamburg, Germany
[9] Univ Autonoma Barcelona, Serv Ressonancia Magnet Nucl, E-08193 Bellaterra, Spain
[10] Univ Autonoma Barcelona, Dept Quim, E-08193 Bellaterra, Spain
关键词: Hydrogen storage materials;    LiBH4;    Synchrotron Radiation Powder X-ray;    Diffraction;    Solid State Magic Angle Spinning (MAS);    Nuclear Magnetic Resonance (NMR);   
DOI  :  10.1016/j.jallcom.2013.12.027
来源: Elsevier
PDF
【 摘 要 】

In the present work we focus the attention on the phase structural transformations occurring upon the desorption process of the LiBH4 + LiAlH4 system. This study is conducted by means of manometric-calorimetric, in situ Synchrotron Radiation Powder X-ray Diffraction (SR-PXD) and ex situ Solid State Magic Angle Spinning (MAS) Nuclear Magnetic Resonance (NMR) measurements. The desorption reaction is characterized by two main dehydrogenation steps starting at 320 and 380 degrees C, respectively. The first step corresponds to the decomposition of LiAlH4 into Al and H-2 via the formation of Li3AlH6 whereas the second one refers to the dehydrogenation of LiBH4 (molten state). In the range 328-380 degrees C, the molten LiBH4 reacts with metallic Al releasing hydrogen and forming an unidentified phase which appears to be an important intermediate for the desorption mechanism of LiBH4-Al-based systems. Interestingly, NMR studies indicate that the unknown intermediate is stable up to 400 degrees C and it is mainly composed of Li, B, Al and H. In addition, the NMR measurements of the annealed powders (400 degrees C) confirm that the desorption reaction of the LiBH4 + Al system proceeds via an amorphous boron compound. (C) 2013 Elsevier B.V. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jallcom_2013_12_027.pdf 992KB PDF download
  文献评价指标  
  下载次数:7次 浏览次数:0次