期刊论文详细信息
JOURNAL OF ALGEBRA 卷:292
Compressed Drinfeld associators
Article
Kurlin, V
关键词: Drinfeld associator;    compressed associator;    Kontsevich integral;    zeta function;    knot;    hexagon equation;    pentagon equation;    Bernoulli numbers;    extended Bernoulli numbers;    Campbell-Baker-Hausdorff formula;    Lie algebra;    chord diagrams;    Vassiliev invariants;    compressed Vassiliev invariants;   
DOI  :  10.1016/j.jalgebra.2005.05.013
来源: Elsevier
PDF
【 摘 要 】

Drinfeld associator is a key tool in computing the Kontsevich integral of knots. A Drinfeld associator is a series in two non-commuting variables, satisfying highly complicated algebraic equations-hexagon and pentagon. The logarithm of a Drinfeld associator lives in the Lie algebra L generated by the symbols a, b, c modulo [a, b] = [b, c] = [c, a]. The main result is a description of compressed associators that obey the compressed pentagon and hexagon in the quotient L/[[L, L], [L, L]]. The key ingredient is an explicit form of Campbell-Baker-Hausdorff formula in the case when all commutators commute. (c) 2005 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jalgebra_2005_05_013.pdf 402KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次