期刊论文详细信息
JOURNAL OF ALGEBRA 卷:350
The dual minimum distance of arbitrary-dimensional algebraic-geometric codes
Article
Couvreur, Alain
关键词: Algebraic geometry;    Finite fields;    Error-correcting codes;    Algebraic-geometric codes;    Linear systems;   
DOI  :  10.1016/j.jalgebra.2011.09.030
来源: Elsevier
PDF
【 摘 要 】

In this article, the minimum distance of the dual C-perpendicular to of a functional code C on an arbitrary-dimensional variety X over a finite field F-q is studied. The approach is based on problems a la Cayley-Bacharach and consists in describing the minimal configurations of points on X which fail to impose independent conditions on forms of some degree m. If X is a curve, the result improves in some situations the well-known Goppa designed distance. (C) 2011 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jalgebra_2011_09_030.pdf 287KB PDF download
  文献评价指标  
  下载次数:2次 浏览次数:1次