期刊论文详细信息
JOURNAL OF ALGEBRA 卷:491
Generalized reflection root systems
Article
Gorelik, Maria1  Shaviv, Ary1 
[1] Weizmann Inst Sci, Dept Math, IL-76100 Rehovot, Israel
关键词: Root systems;    Lie superalgebras;   
DOI  :  10.1016/j.jalgebra.2017.08.010
来源: Elsevier
PDF
【 摘 要 】

We study a combinatorial object, which we call a GRRS (generalized reflection root system); the classical root systems and GRSs introduced by V. Serganova are examples of finite GRRSs. A GRRS is finite if it contains a finite number of vectors and is called affine if it is infinite and has a finite minimal quotient. We prove that an irreducible GRRS containing an isotropic root is either finite or affine; we describe all finite and affine GRRSs and classify them in most of the cases. (C) 2017 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jalgebra_2017_08_010.pdf 527KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次