期刊论文详细信息
JOURNAL OF ALGEBRA 卷:556
Invariants of polynomials mod Frobenius powers
Article
Drescher, C.1  Shepler, A., V1 
[1] Univ North Texas, Dept Math, Denton, TX 76203 USA
关键词: Reflection groups;    Invariant theory;    Catalan numbers;    Fuss-Catalan numbers;    Frobenius map;    (q,t)-binomial coefficients;    Transvections;   
DOI  :  10.1016/j.jalgebra.2020.02.041
来源: Elsevier
PDF
【 摘 要 】

Lewis, Reiner, and Stanton conjectured a Hilbert series for a space of invariants under an action of finite general linear groups using (q, t)-binomial coefficients. This work gives an analog in positive characteristic of theorems relating various Catalan numbers to the representation theory of rational Cherednik algebras. They consider a finite general linear group as a reflection group acting on the quotient of a polynomial ring by iterated powers of the irrelevant ideal under the Frobenius map. We prove a variant of their conjecture in the local case, when the group acting fixes a reflecting hyperplane. (C) 2020 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jalgebra_2020_02_041.pdf 516KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次