期刊论文详细信息
JOURNAL OF ALGEBRA 卷:562
Simple Z-graded domains of Gelfand-Kirillov dimension two
Article
Ferraro, Luigi1  Gaddis, Jason2  Won, Robert3 
[1] Wake Forest Univ, Dept Math & Stat, POB 7388, Winston Salem, NC 27109 USA
[2] Miami Univ, Dept Math, 301 S Patterson Ave, Oxford, OH 45056 USA
[3] Univ Washington, Dept Math, Box 354350, Seattle, WA 98195 USA
关键词: Generalized Weyl algebras;    Graded rings;    Noncommutative projective schemes;    Translation principle;    Morita equivalence;   
DOI  :  10.1016/j.jalgebra.2020.06.030
来源: Elsevier
PDF
【 摘 要 】

Let k be an algebraically closed field and A a Z-graded finitely generated simple k-algebra which is a domain of Gelfand-Kirillov dimension 2. We show that the category of Z-graded right A-modules is equivalent to the category of quasicoherent sheaves on a certain quotient stack. The theory of these simple algebras is closely related to that of a class of generalized Weyl algebras (GWAs). We prove a translation principle for the noncommutative schemes of these GWAs, shedding new light on the classical translation principle for the infinite-dimensional primitive quotients of U(sl(2)). (C) 2020 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jalgebra_2020_06_030.pdf 597KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次