期刊论文详细信息
JOURNAL OF ALGEBRA 卷:319
Eigenvalues of unipotent elements in cross-characteristic representations of finite classical groups
Article
Di Martino, L.1  Zalesskii, A. E.2 
[1] Univ Studi Milano Bicocca, Dipartimento Matemat & Applicaz, I-20125 Milan, Italy
[2] Univ E Anglia, Sch Math, Norwich NR4 7TJ, Norfolk, England
关键词: finite classical groups;    cross-characteristic representations;    unipotent elements;    eigenvalue multiplicities;   
DOI  :  10.1016/j.jalgebra.2007.12.024
来源: Elsevier
PDF
【 摘 要 】

Let H be a finite classical group, g be a unipotent element of H of order s and theta be an irreducible representation of H with dim theta > 1 over an algebraically closed field of characteristic coprime to s. We show that almost always all the s-roots of unity occur as eigenvalues of theta(g), and classify all the triples (H, g, theta) for which this does not hold. In particular, we list the triples for which I is not an eigenvalue of (g). We also give estimates of the asymptotic behavior of eigenvalue multiplicities when the rank of H grows and s is fixed. (C) 2008 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jalgebra_2007_12_024.pdf 566KB PDF download
  文献评价指标  
  下载次数:1次 浏览次数:0次