期刊论文详细信息
JOURNAL OF ALGEBRA 卷:354
The Armendariz property on ideals
Article
Kwak, Tai Keun1  Lee, Yang2  Yun, Sang Jo3 
[1] Daejin Univ, Dept Math, Pochon 487711, South Korea
[2] Pusan Natl Univ, Dept Math Educ, Pusan 609735, South Korea
[3] Pusan Natl Univ, Dept Math, Pusan 609735, South Korea
关键词: Ideal-Armendariz ring;    Armendariz ring;    Insertion-of-factors-property (IFP);    Symmetric ring;    Von Neumann regular ring;    Minimal noncommutative ring;    Abelian ring;   
DOI  :  10.1016/j.jalgebra.2011.12.019
来源: Elsevier
PDF
【 摘 要 】

In the present note we study the Armendariz property on ideals of rings, introducing a new concept which unifies the Armendariz property and the insertion-of-factors-property (simply. IFP) for rings. In relation with this work, we investigate rings over which polynomial rings are IFP, called strongly IFP rings, which generalize both ideal-Armendariz rings and strongly reversible rings. The classes of minimal noncommutative ideal-Armendariz rings and strongly IFP rings, and the classes of minimal non-Abelian ideal-Armendariz rings and strongly IFP rings are completely determined, up to isomorphism. It is also shown that a local ring is Armendariz. symmetric, and strongly reversible (hence ideal-Armendariz) when the cardinality of the Jacobson radical is 4. (C) 2012 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jalgebra_2011_12_019.pdf 227KB PDF download
  文献评价指标  
  下载次数:5次 浏览次数:0次