期刊论文详细信息
JOURNAL OF ALGEBRA 卷:536
Noncommutative quasi-resolutions
Article
Qin, X-S1  Wang, Y-H2  Zhang, J. J.3 
[1] Fudan Univ, Shanghai Ctr Math Sci, Sch Math Sci, Shanghai 200433, Peoples R China
[2] Shanghai Univ Finance & Econ, Sch Math, Shanghai Key Lab Financial Informat Technol, Shanghai 200433, Peoples R China
[3] Univ Washington, Dept Math, Box 354350, Seattle, WA 98195 USA
关键词: Noncommutative crepant resolution (NCCR);    Noncommutative quasi-resolution (NQR);    Morita equivalent;    Derived equivalent;    Auslander-Gorenstein algebra;    Auslander regular algebra;    Cohen-Macaulay algebra;    Dimension function;   
DOI  :  10.1016/j.jalgebra.2019.07.015
来源: Elsevier
PDF
【 摘 要 】

The notion of a noncommutative quasi-resolution is introduced for a noncommutative noetherian algebra with singularities, even for a non-Cohen-Macaulay algebra. If A is a commutative normal Gorenstein domain, then a noncommutative quasi-resolution of A naturally produces a noncommutative crepant resolution (NCCR) of A in the sense of Van den Bergh, and vice versa. Under some mild hypotheses, we prove that (i) in dimension two, all noncommutative quasi-resolutions of a given noncommutative algebra are Morita equivalent, and (ii) in dimension three, all noncommutative quasi-resolutions of a given noncommutative algebra are derived equivalent. These assertions generalize important results of Van den Bergh, Iyama-Reiten and Iyama-Wemyss in the commutative and central-finite cases. (C) 2019 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jalgebra_2019_07_015.pdf 711KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次