JOURNAL OF ALGEBRA | 卷:536 |
Noncommutative quasi-resolutions | |
Article | |
Qin, X-S1  Wang, Y-H2  Zhang, J. J.3  | |
[1] Fudan Univ, Shanghai Ctr Math Sci, Sch Math Sci, Shanghai 200433, Peoples R China | |
[2] Shanghai Univ Finance & Econ, Sch Math, Shanghai Key Lab Financial Informat Technol, Shanghai 200433, Peoples R China | |
[3] Univ Washington, Dept Math, Box 354350, Seattle, WA 98195 USA | |
关键词: Noncommutative crepant resolution (NCCR); Noncommutative quasi-resolution (NQR); Morita equivalent; Derived equivalent; Auslander-Gorenstein algebra; Auslander regular algebra; Cohen-Macaulay algebra; Dimension function; | |
DOI : 10.1016/j.jalgebra.2019.07.015 | |
来源: Elsevier | |
【 摘 要 】
The notion of a noncommutative quasi-resolution is introduced for a noncommutative noetherian algebra with singularities, even for a non-Cohen-Macaulay algebra. If A is a commutative normal Gorenstein domain, then a noncommutative quasi-resolution of A naturally produces a noncommutative crepant resolution (NCCR) of A in the sense of Van den Bergh, and vice versa. Under some mild hypotheses, we prove that (i) in dimension two, all noncommutative quasi-resolutions of a given noncommutative algebra are Morita equivalent, and (ii) in dimension three, all noncommutative quasi-resolutions of a given noncommutative algebra are derived equivalent. These assertions generalize important results of Van den Bergh, Iyama-Reiten and Iyama-Wemyss in the commutative and central-finite cases. (C) 2019 Elsevier Inc. All rights reserved.
【 授权许可】
Free
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
10_1016_j_jalgebra_2019_07_015.pdf | 711KB | download |