期刊论文详细信息
JOURNAL OF ALGEBRA | 卷:375 |
Invariant rings through categories | |
Article | |
Alper, Jarod1  de Jong, A. J.2  | |
[1] Australian Natl Univ, Inst Math Sci, Canberra, ACT 0200, Australia | |
[2] Columbia Univ, Dept Math, New York, NY 10027 USA | |
关键词: Algebraic geometry; Invariant theory; Categories; Algebraic stacks; Hopf algebras; | |
DOI : 10.1016/j.jalgebra.2012.11.005 | |
来源: Elsevier | |
【 摘 要 】
We formulate a notion of geometric reductivity in an abstract categorical setting which we refer to as adequacy. The main theorem states that the adequacy condition implies that the ring of invariants is finitely generated. This result applies to the category of modules over a bialgebra, the category of comodules over a bialgebra, and the category of quasi-coherent sheaves on an algebraic stack of finite type over an affine base. (C) 2012 Elsevier Inc. All rights reserved.
【 授权许可】
Free
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
10_1016_j_jalgebra_2012_11_005.pdf | 284KB | download |