期刊论文详细信息
JOURNAL OF ALGEBRA 卷:371
Resolutions, higher extensions and the relative Mal'tsev axiom
Article
Everaert, Tomas1,2  Goedecke, Julia1,3  Van der Linden, Tim1,4 
[1] Catholic Univ Louvain, Inst Rech Math & Phys, B-1348 Louvain, Belgium
[2] Vrije Univ Brussel, Vakgrp Wiskunde, B-1050 Brussels, Belgium
[3] Univ Cambridge, Queens Coll, Cambridge CB2 1TN, England
[4] Univ Coimbra, Ctr Matemat, P-3001454 Coimbra, Portugal
关键词: Higher extension;    Simplicial resolution;    Mal'tsev condition;    Relative homological algebra;   
DOI  :  10.1016/j.jalgebra.2012.07.036
来源: Elsevier
PDF
【 摘 要 】

We study how the concept of higher-dimensional extension which comes from categorical Galois theory relates to simplicial resolutions. For instance, an augmented simplicial object is a resolution if and only if its truncation in every dimension gives a higher extension, in which sense resolutions are infinite-dimensional extensions or higher extensions are finite-dimensional resolutions. We also relate certain stability conditions of extensions to the Kan property for simplicial objects. This gives a new proof of the fact that a regular category is Mal'tsev if and only if every simplicial object is Kan, using a relative setting of extensions. (C) 2012 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jalgebra_2012_07_036.pdf 347KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次