JOURNAL OF ALGEBRA | 卷:322 |
Hypergeometric D-modules and twisted Gauss-Manin systems | |
Article | |
Schulze, Mathias1  Walther, Uli2  | |
[1] Oklahoma State Univ, Dept Math, Stillwater, OK 74078 USA | |
[2] Purdue Univ, Dept Math, W Lafayette, IN 47907 USA | |
关键词: Toric ring; Hypergeometric system; Euler-Koszul homology; D-module; Direct image; Gauss-Manin system; | |
DOI : 10.1016/j.jalgebra.2008.09.010 | |
来源: Elsevier | |
【 摘 要 】
The Euler-Koszul complex is the fundamental tool in the homological study of A-hypergeometric differential systems and functions. We compare Euler-Koszul homology with D-module direct images from the torus to the base space through orbits in the corresponding toric variety. Our approach generalizes a result by Gel'fand et al. [I.M. Gel'fand, M.M. Kapranov, A.V. Zelevinsky, Generalized Euler integrals and A-hypergeometric functions, Adv. Math. 84 (2) (1990) 255-271, MR MR1080980 (92e:33015), Thm. 4.6] and yields a simpler, more algebraic proof. In the process we extend the Euler-Koszul functor to a category of infinite toric modules and describe multigraded localizations of Euler-Koszul homology. (C) 2008 Elsevier Inc. All rights reserved.
【 授权许可】
Free
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
10_1016_j_jalgebra_2008_09_010.pdf | 223KB | download |