期刊论文详细信息
JOURNAL OF ALGEBRA 卷:322
Hypergeometric D-modules and twisted Gauss-Manin systems
Article
Schulze, Mathias1  Walther, Uli2 
[1] Oklahoma State Univ, Dept Math, Stillwater, OK 74078 USA
[2] Purdue Univ, Dept Math, W Lafayette, IN 47907 USA
关键词: Toric ring;    Hypergeometric system;    Euler-Koszul homology;    D-module;    Direct image;    Gauss-Manin system;   
DOI  :  10.1016/j.jalgebra.2008.09.010
来源: Elsevier
PDF
【 摘 要 】

The Euler-Koszul complex is the fundamental tool in the homological study of A-hypergeometric differential systems and functions. We compare Euler-Koszul homology with D-module direct images from the torus to the base space through orbits in the corresponding toric variety. Our approach generalizes a result by Gel'fand et al. [I.M. Gel'fand, M.M. Kapranov, A.V. Zelevinsky, Generalized Euler integrals and A-hypergeometric functions, Adv. Math. 84 (2) (1990) 255-271, MR MR1080980 (92e:33015), Thm. 4.6] and yields a simpler, more algebraic proof. In the process we extend the Euler-Koszul functor to a category of infinite toric modules and describe multigraded localizations of Euler-Koszul homology. (C) 2008 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jalgebra_2008_09_010.pdf 223KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次