期刊论文详细信息
JOURNAL OF ALGEBRA | 卷:323 |
From Thompson to Baer-Suzuki: A sharp characterization of the solvable radical | |
Article | |
Gordeev, Nikolai2  Grunewald, Fritz3  Kunyavskii, Boris1  Plotkin, Eugene1  | |
[1] Bar Ilan Univ, Dept Math, IL-52900 Ramat Gan, Israel | |
[2] Herzen State Pedag Univ, Dept Math, St Petersburg 191186, Russia | |
[3] Univ Dusseldorf, Math Inst, D-40225 Dusseldorf, Germany | |
关键词: Finite group; Solvable radical; Simple algebraic group; Finite field; | |
DOI : 10.1016/j.jalgebra.2010.01.032 | |
来源: Elsevier | |
【 摘 要 】
We prove that an element g of prime order > 3 belongs to the solvable radical R(G) of a finite (or, more generally, a linear) group if and only if for every x is an element of G the subgroup generated by g, xgx(-1) is solvable. This theorem implies that a finite (or a linear) group G is solvable if and only if in each conjugacy class of G every two elements generate a solvable subgroup. (C) 2010 Elsevier Inc. All rights reserved.
【 授权许可】
Free
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
10_1016_j_jalgebra_2010_01_032.pdf | 275KB | download |