期刊论文详细信息
JOURNAL OF ALGEBRA 卷:323
From Thompson to Baer-Suzuki: A sharp characterization of the solvable radical
Article
Gordeev, Nikolai2  Grunewald, Fritz3  Kunyavskii, Boris1  Plotkin, Eugene1 
[1] Bar Ilan Univ, Dept Math, IL-52900 Ramat Gan, Israel
[2] Herzen State Pedag Univ, Dept Math, St Petersburg 191186, Russia
[3] Univ Dusseldorf, Math Inst, D-40225 Dusseldorf, Germany
关键词: Finite group;    Solvable radical;    Simple algebraic group;    Finite field;   
DOI  :  10.1016/j.jalgebra.2010.01.032
来源: Elsevier
PDF
【 摘 要 】

We prove that an element g of prime order > 3 belongs to the solvable radical R(G) of a finite (or, more generally, a linear) group if and only if for every x is an element of G the subgroup generated by g, xgx(-1) is solvable. This theorem implies that a finite (or a linear) group G is solvable if and only if in each conjugacy class of G every two elements generate a solvable subgroup. (C) 2010 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jalgebra_2010_01_032.pdf 275KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次