期刊论文详细信息
JOURNAL OF ALGEBRA | 卷:324 |
Gorenstein syzygy modules | |
Article | |
Huang, Chonghui1,2  Huang, Zhaoyong1  | |
[1] Nanjing Univ, Dept Math, Nanjing 210093, Peoples R China | |
[2] Univ S China, Res Inst Math, Hengyang 421001, Peoples R China | |
关键词: Gorenstein projective modules; Gorenstein n syzygy modules; n syzygy modules; Gorenstein projective dimension; Gorenstein transpose; | |
DOI : 10.1016/j.jalgebra.2010.10.010 | |
来源: Elsevier | |
【 摘 要 】
For any ring R and any positive integer n we prove that a left R-module is a Gorenstein n-syzygy if and only if it is an n-syzygy Over a left and right Noetherian ring we introduce the notion of the Gorenstein transpose of finitely generated modules We prove that a module M E mod R P is a Gorenstein transpose of a module A E mod R if and only if M can be embedded into a transpose of A with the cokernel Gorenstein projective Some applications of this result are given (C) 2010 Elsevier Inc All rights reserved
【 授权许可】
Free
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
10_1016_j_jalgebra_2010_10_010.pdf | 156KB | download |