期刊论文详细信息
JOURNAL OF ALGEBRA 卷:519
Krull dimension of a power series ring over a valuation domain
Article
Phan Thanh Toan1  Kang, Byung Gyun2 
[1] Ton Duc Thang Univ, Fac Math & Stat, Fract Calculus Optimizat & Algebra Res Grp, Ho Chi Minh City, Vietnam
[2] Pohang Univ Sci & Technol, Dept Math, Pohang 37673, South Korea
关键词: eta(1)-set;    Infinite product of power series;    Krull dimension;    Power series ring;    Ring of entire functions;    Ultrafilter;    Valuation domain;   
DOI  :  10.1016/j.jalgebra.2018.09.019
来源: Elsevier
PDF
【 摘 要 】

Let V be a one-dimensional nondiscrete valuation domain and let V* = V \ {0}. We prove that Krull-dimV[X](V*) >= 2(aleph 1), which is an analogue of the fact that Krull-dim E >= 2(aleph 1), where E is the ring of entire functions. The lower bound 2(aleph 1) is sharp. In fact, if V is countable then, Krull-dimV[X](V*) = 2(aleph 1 )under the continuum hypothesis. We construct a chain of prime ideals in V[X] with length >= 2(aleph 1) such that each prime ideal in the chain has height >= 2(aleph 1) and contracts to {0} in V. We also show that for a finite-dimensional valuation domain W, either Krull-dimW [X] < infinity or Krull-dimW [X] >= 2(aleph 1). (C) 2018 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jalgebra_2018_09_019.pdf 472KB PDF download
  文献评价指标  
  下载次数:5次 浏览次数:2次