JOURNAL OF ALGEBRA | 卷:448 |
On the structure of Specht modules in the principal block of FΣ3p | |
Article | |
Rosas, Michael1  | |
[1] SUNY Buffalo, Univ Buffalo, Dept Math, 244 Math Bldg, Buffalo, NY 14260 USA | |
关键词: Symmetric group; Specht module; | |
DOI : 10.1016/j.jalgebra.2015.10.003 | |
来源: Elsevier | |
【 摘 要 】
Let F be a field of characteristic p at least 5. We study the Loewy structures of Specht modules in the principal block of F Sigma(3p). We show that a Specht module in the block has Loewy length at most 4 and composition length at most 14. Furthermore, we classify which Specht modules have Loewy length 1, 2, 3, or 4, produce a Specht module having 14 composition factors, describe the second radical layer and the socle of the reducible Specht modules, and prove that if a Specht module corresponds to a partition that is p-regular and p-restricted then the head of the Specht module does not extend the socle. (C) 2015 Published by Elsevier Inc.
【 授权许可】
Free
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
10_1016_j_jalgebra_2015_10_003.pdf | 792KB | download |