JOURNAL OF ALGEBRA | 卷:320 |
A new perspective on the Frenkel-Zhu fusion rule theorem | |
Article | |
Feingold, Alex J.1  Fredenhagen, Stefan2  | |
[1] SUNY Binghamton, Dept Math Sci, Binghamton, NY 13902 USA | |
[2] Albert Einstein Inst, Max Planck Inst Gravitationphys, D-14476 Golm, Germany | |
关键词: fusion rules; affine Kac-Moody algebras; | |
DOI : 10.1016/j.jalgebra.2008.05.026 | |
来源: Elsevier | |
【 摘 要 】
In this paper we prove a formula for fusion coefficients of affine Kac-Moody algebras first conjectured by Walton [M.A. Walton, Tensor products and fusion rules, Canad. J. Phys. 72 (1994) 527-536], and rediscovered by Feingold [A. Feingold, Fusion rules for affine Kac-Moody algebras, in: N. Sthanumoorthy, Kailash Misra (Eds.), Kac-Moody Lie Algebras and Related Topics, Ramanujan International Symposium on Kac-Moody Algebras and Applications, Jan. 28-31, 2002, Ramanujan Institute for Advanced Study in Mathematics, University of Madras, Chennai, India, in: Contemp. Math., vol. 343, American Mathematical Society, Providence, RI, 2004, pp. 53-96]. It is a reformulation of the Frenkel-Zhu affine fusion rule theorem [I.B. Frenkel, Y. Zhu, Vertex operator algebras associated to representations of affine and Virasoro algebras, Duke Math. J. 66 (1992) 123-168], written so that it can be seen as a beautiful generalization of the classical Parthasarathy-Ranga Rao-Varadarajan tensor product theorem [K.R. Parthasarathy, R. Ranga Rao, V.S. Varadarajan, Representations of complex semi-simple Lie groups and Lie algebras, Ann. of Math. (2) 85 (1967) 383-429]. (C) 2008 Elsevier Inc. All rights reserved.
【 授权许可】
Free
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
10_1016_j_jalgebra_2008_05_026.pdf | 224KB | download |