| JOURNAL OF ALGEBRA | 卷:519 |
| Integrable representations for toroidal extended affine Lie algebras | |
| Article | |
| Chen, Fulin1  Li, Zhiqiang1  Tan, Shaobin1  | |
| [1] Xiamen Univ, Sch Math Sci, Xiamen 361005, Peoples R China | |
| 关键词: Extended affine Lie algebra; Toroidal Lie algebra; Loop representation; Integrable representation; | |
| DOI : 10.1016/j.jalgebra.2018.11.003 | |
| 来源: Elsevier | |
PDF
|
|
【 摘 要 】
Let g be any untwisted affine Kac-Moody algebra, mu any fixed complex number, and (g) over tilde(mu) the corresponding toroidal extended affine Lie algebra of nullity two. For any k-tuple lambda = (lambda(1), . . . , lambda(k)) of weights of g, and k-tuple a = (a(1), . . . , a(k)) of distinct non-zero complex numbers, we construct a class of modules (V) over tilde(lambda, a) for the extended affine Lie algebra (g) over tilde(mu). We prove that the ( g) over tilde(mu)-module (V) over tilde(lambda, a) is completely reducible. We also prove that the (g) over tilde(mu)-module (V) over tilde(lambda, a) is integrable when all weights lambda(i) in lambda are dominant. Thus, we obtain a new class of irreducible integrable weight modules for the toroidal extended affine Lie algebra (g) over tilde(mu). (C) 2018 Published by Elsevier Inc.
【 授权许可】
Free
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| 10_1016_j_jalgebra_2018_11_003.pdf | 446KB |
PDF