期刊论文详细信息
JOURNAL OF ALGEBRA 卷:586
Fourier matrices for G(d, 1, n) from quantum general linear groups
Article
Lacabanne, Abel1 
[1] Catholic Univ Louvain, Inst Rech Math & Phys, Chemin Cyclotron 2, B-1348 Louvain La Neuve, Belgium
关键词: Modular data;    Fusion categories;    Representation of quantum groups;    Categorification;   
DOI  :  10.1016/j.jalgebra.2021.06.034
来源: Elsevier
PDF
【 摘 要 】

We construct a categorification of the modular data associated with every family of unipotent characters of the spetsial complex reflection group G(d, 1, n). The construction of the category follows the decomposition of the Fourier matrix as a Kronecker tensor product of exterior powers of the character table S of the cyclic group of order d. The representations of the quantum universal enveloping algebra of the general linear Lie algebra gl(m), with quantum parameter an even root of unity of order 2d, provide a categorical interpretation of the matrix Lambda(m) S. We also prove some positivity conjectures of Cuntz at the decategorified level. (C) 2021 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jalgebra_2021_06_034.pdf 588KB PDF download
  文献评价指标  
  下载次数:10次 浏览次数:0次