JOURNAL OF ALGEBRA | 卷:556 |
Indecomposable Jordan types of Loewy length 2 | |
Article | |
Bissinger, Daniel1  | |
[1] Christian Albrechts Univ Kiel, Ludeleig Meyn Str 4, D-24098 Kiel, Germany | |
关键词: Kronecker algebra; Constant Jordan type; Covering theory; | |
DOI : 10.1016/j.jalgebra.2020.03.010 | |
来源: Elsevier | |
【 摘 要 】
Let k be an algebraically closed field, char(k) = p >= 2 and E-r be a elementary abelian p-group of rank r >= 2. Let (c, d) is an element of N-2. We show that there exists an indecomposable module of constant Jordan type [1](c) [2](d) and Loewy length 2 if and only if q(Gamma r) (d, d+ c) <= 1 and c >= r -1, where q(Gamma r) (x,y) := x(2) +y(2)-rxy denotes the Tits form of the generalized Kronecker quiver Since p > 2 and constant Jordan type [1](c)[2](d) imply Loewy length <= 2, we get in this case the full classification of Jordan types [1](c) [2](d) that arise from indecomposable modules. (C) 2020 Elsevier Inc. All rights reserved.
【 授权许可】
Free
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
10_1016_j_jalgebra_2020_03_010.pdf | 493KB | download |