期刊论文详细信息
JOURNAL OF ALGEBRA 卷:567
Pre-Calabi-Yau algebras as noncommutative Poisson structures
Article
Iyudu, Natalia1  Kontsevich, Maxim2  Vlassopoulos, Yannis2 
[1] Univ Edinburgh, Sch Math, James Clerk Maxwell Bldg,Kings Bldg, Edinburgh EH9 3FD, Midlothian, Scotland
[2] Inst Hautes Etud Sci, 35 Route Chartres, F-91440 Bures Sur Yvette, France
关键词: A-infinity structure;    Pre-Calabi-Yau algebra;    Inner product;    Cyclic invariance;    Graded pre-Lie algebras;    Necklace bracket;    Maurer-Cartan equation;    Double Poisson brackets;   
DOI  :  10.1016/j.jalgebra.2020.08.029
来源: Elsevier
PDF
【 摘 要 】

We give an explicit formula showing how the double Poisson algebra introduced in [14] appears as a particular part of a pre-Calabi-Yau structure, i.e. cyclically invariant, with respect to the natural inner form, solution of the Maurer-Cartan equation on A circle plus A*. Specific part of this solution is described, which is in one-to-one correspondence with the double Poisson algebra structures. The result holds for any associative algebra A and emphasises the special role of the fourth component of pre-Calabi-Yau structure in this respect. As a consequence we have that appropriate pre-Calabi-Yau structures induce a Poisson brackets on representation spaces (Rep(n)A)(Gln) for any associative algebra A. (C) 2020 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jalgebra_2020_08_029.pdf 437KB PDF download
  文献评价指标  
  下载次数:2次 浏览次数:2次