期刊论文详细信息
JOURNAL OF ALGEBRA 卷:323
Betti numbers of chordal graphs and f -vectors of simplicial complexes
Article
Hibi, Takayuki1  Kimura, Kyouko1  Murai, Satoshi2 
[1] Osaka Univ, Grad Sch Informat Sci & Technol, Dept Pure & Appl Math, Osaka 560043, Japan
[2] Yamaguchi Univ, Fac Sci, Dept Math Sci, Yamaguchi 7538512, Japan
关键词: Monomial ideal;    Betti sequence;    Simplicial complex;    f-Vector;    Chordal graph;   
DOI  :  10.1016/j.jalgebra.2009.12.029
来源: Elsevier
PDF
【 摘 要 】

Let G he a chordal graph and I(G) its edge ideal. Let beta(I(G)) = (beta(0), beta(1).....beta(p)) denote the Betti sequence of I(G), where beta(1) stands for the ith total Betti number of I(G) and where p is the projective dimension of I(G). It will be shown that there exists a simplicial complex Delta of dimension p whose f-vector f(Delta) = (f(0). f(1).....f(p)) coincides with beta(I(G)). (C) 2010 Elsevier Inc, All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jalgebra_2009_12_029.pdf 214KB PDF download
  文献评价指标  
  下载次数:1次 浏览次数:0次