期刊论文详细信息
JOURNAL OF ALGEBRA | 卷:323 |
Betti numbers of chordal graphs and f -vectors of simplicial complexes | |
Article | |
Hibi, Takayuki1  Kimura, Kyouko1  Murai, Satoshi2  | |
[1] Osaka Univ, Grad Sch Informat Sci & Technol, Dept Pure & Appl Math, Osaka 560043, Japan | |
[2] Yamaguchi Univ, Fac Sci, Dept Math Sci, Yamaguchi 7538512, Japan | |
关键词: Monomial ideal; Betti sequence; Simplicial complex; f-Vector; Chordal graph; | |
DOI : 10.1016/j.jalgebra.2009.12.029 | |
来源: Elsevier | |
【 摘 要 】
Let G he a chordal graph and I(G) its edge ideal. Let beta(I(G)) = (beta(0), beta(1).....beta(p)) denote the Betti sequence of I(G), where beta(1) stands for the ith total Betti number of I(G) and where p is the projective dimension of I(G). It will be shown that there exists a simplicial complex Delta of dimension p whose f-vector f(Delta) = (f(0). f(1).....f(p)) coincides with beta(I(G)). (C) 2010 Elsevier Inc, All rights reserved.
【 授权许可】
Free
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
10_1016_j_jalgebra_2009_12_029.pdf | 214KB | download |