期刊论文详细信息
JOURNAL OF ALGEBRA 卷:546
Double Grothendieck polynomials for symplectic and odd orthogonal Grassmannians
Article
Hudson, Thomas1  Ikeda, Takeshi2  Matsumura, Tomoo2  Naruse, Hiroshi3 
[1] Berg Univ Wuppertal, Fachgrp Math & Informat, D-42119 Wuppertal, Germany
[2] Okayama Univ Sci, Dept Appl Math, Okayama 7000005, Japan
[3] Univ Yamanashi, Grad Sch Educ, Kofu, Yamanashi 4008510, Japan
关键词: Equivariant K-theory;    Isotropic Grassmannians;    Schubert class;    Pfaffian;   
DOI  :  10.1016/j.jalgebra.2019.11.002
来源: Elsevier
PDF
【 摘 要 】

We study the double Grothendieck polynomials of Kirillov-Naruse for the symplectic and odd orthogonal Grassmannians. These functions are explicitly written as Pfaffian sum form and are identified with the stable limits of fundamental classes of the Schubert varieties in torus equivariant connective K-theory of these isotropic Grassmannians. We also provide a combinatorial description of the ring formally spanned be the double Grothendieck polynomials. (C) 2019 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jalgebra_2019_11_002.pdf 440KB PDF download
  文献评价指标  
  下载次数:3次 浏览次数:0次