期刊论文详细信息
| JOURNAL OF ALGEBRA | 卷:328 |
| Even partitions in plethysms | |
| Article | |
| Buergisser, Peter2  Christandl, Matthias1  Ikenmeyer, Christian2  | |
| [1] Swiss Fed Inst Technol, Inst Theoret Phys, CH-8093 Zurich, Switzerland | |
| [2] Univ Paderborn, Inst Math, D-33098 Paderborn, Germany | |
| 关键词: Group representation theory; Plethysms; Geometric complexity theory; Quantum information theory; | |
| DOI : 10.1016/j.jalgebra.2010.10.031 | |
| 来源: Elsevier | |
PDF
|
|
【 摘 要 】
We prove that for all natural numbers k,n,d with k <= d and every partition lambda of size kn with at most k parts there exists an irreducible GL(d)(C)-representation of highest weight 2 lambda in the plethysm Sym(k)(sym(2n) C(d)). This gives an affirmative answer to a conjecture by Weintraub [Steven H. Weintraub, Some observations on plethysms, J. Algebra 129 (1) (1990) 103-114]. Our investigation is motivated by questions of geometric complexity theory and uses ideas from quantum information theory. (C) 2010 Elsevier Inc. All rights reserved.
【 授权许可】
Free
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| 10_1016_j_jalgebra_2010_10_031.pdf | 151KB |
PDF