| JOURNAL OF ALGEBRA | 卷:371 |
| Dual automorphism-invariant modules | |
| Article | |
| Srivastava, Ashish K.1  | |
| [1] St Louis Univ, Dept Math & Comp Sci, St Louis, MO 63103 USA | |
| 关键词: Discrete modules; Lifting modules; Perfect ring; Pseudo-projective modules; Quasi-projective modules; | |
| DOI : 10.1016/j.jalgebra.2012.08.012 | |
| 来源: Elsevier | |
PDF
|
|
【 摘 要 】
A module M is called an automorphism-invariant module if every isomorphism between two essential submodules of M extends to an automorphism of M. This paper introduces the notion of dual of such modules. We call a module M to be a dual automorphism-invariant module if whenever K-1 and K-2 are small submodules of M, then any epimorphism eta : M/K-1 -> M/K-2 with small kernel lifts to an endomorphism phi of M. In this paper we give various examples of dual automorphism-invariant module and study its properties. In particular, we study abelian groups and prove that dual automorphism-invariant abelian groups must be reduced. It is shown that over a right perfect ring R, a lifting right R-module M is dual automorphism-invariant if and only if M is quasi-projective. (C) 2012 Elsevier Inc. All rights reserved.
【 授权许可】
Free
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| 10_1016_j_jalgebra_2012_08_012.pdf | 203KB |
PDF