期刊论文详细信息
JOURNAL OF ALGEBRA 卷:371
Dual automorphism-invariant modules
Article
Srivastava, Ashish K.1 
[1] St Louis Univ, Dept Math & Comp Sci, St Louis, MO 63103 USA
关键词: Discrete modules;    Lifting modules;    Perfect ring;    Pseudo-projective modules;    Quasi-projective modules;   
DOI  :  10.1016/j.jalgebra.2012.08.012
来源: Elsevier
PDF
【 摘 要 】

A module M is called an automorphism-invariant module if every isomorphism between two essential submodules of M extends to an automorphism of M. This paper introduces the notion of dual of such modules. We call a module M to be a dual automorphism-invariant module if whenever K-1 and K-2 are small submodules of M, then any epimorphism eta : M/K-1 -> M/K-2 with small kernel lifts to an endomorphism phi of M. In this paper we give various examples of dual automorphism-invariant module and study its properties. In particular, we study abelian groups and prove that dual automorphism-invariant abelian groups must be reduced. It is shown that over a right perfect ring R, a lifting right R-module M is dual automorphism-invariant if and only if M is quasi-projective. (C) 2012 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jalgebra_2012_08_012.pdf 203KB PDF download
  文献评价指标  
  下载次数:2次 浏览次数:3次