期刊论文详细信息
JOURNAL OF ALGEBRA 卷:450
Structure of Chevalley groups over rings via universal localization
Article
Stepanov, Alexei1,2 
[1] St Petersburg State Univ, Dept Math & Mech, Univ Sky 28, St Petersburg 198504, Russia
[2] St Petersburg State Electrotech Univ, Prof Popova 5, St Petersburg 197376, Russia
关键词: Chevalley group;    Commutator formula;    Elementary subgroup;    Nilpotent structure;    Word length;    Principal congruence subgroup;    Localization;   
DOI  :  10.1016/j.jalgebra.2015.11.031
来源: Elsevier
PDF
【 摘 要 】

In the current article we study the structure of a Chevalley group G(R) over a commutative ring R. We generalize and improve the following results on: the standard, relative, and multi-relative commutator formulas; the nilpotent structure of [relative] K-1; the bounded word length of commutators. To this end we enlarge the elementary group, construct a generic element for the extended elementary group, and use localization in the universal ring. The key step is a construction of a generic element for the principal congruence subgroup, corresponding to a principal ideal. (C) 2015 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jalgebra_2015_11_031.pdf 546KB PDF download
  文献评价指标  
  下载次数:5次 浏览次数:0次