期刊论文详细信息
JOURNAL OF ALGEBRA | 卷:565 |
On a conjecture about dominant dimensions of algebras | |
Article | |
Marczinzik, Rene1  | |
[1] Univ Stuttgart, Inst Algebra & Number Theory, Pfaffenwaldring 57, D-70569 Stuttgart, Germany | |
关键词: Dominant dimension; Representation theory of finite dimensional algebras; Higher Auslander algebras; | |
DOI : 10.1016/j.jalgebra.2020.08.014 | |
来源: Elsevier | |
【 摘 要 】
We present examples of algebras A having dominant dimension n, for every n >= 1, such that the algebra B = End(A) (I-0 circle plus Omega(-n) (A)) has dominant dimension different from n, where I-0 is the injective hull of A. This gives a counterexample to a recent conjecture of Chen and Xi. While the conjecture is false in general, we show that a large class of algebras containing higher Auslander algebras satisfies the conjecture. (C) 2020 Elsevier Inc. All rights reserved.
【 授权许可】
Free
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
10_1016_j_jalgebra_2020_08_014.pdf | 354KB | download |