JOURNAL OF ALGEBRA | 卷:298 |
The quantum algebra Uq(sl2) and its equitable presentation | |
Article | |
Ito, T ; Terwilliger, P ; Weng, CW | |
关键词: quantum group; quantum algebra; Leonard pair; tridiagonal pair; | |
DOI : 10.1016/j.jalgebra.2005.07.038 | |
来源: Elsevier | |
【 摘 要 】
We show that the quantum algebra U-q(sl(2)) has a presentation with generators x(+/- 1), y, Z and relations xx(-1) = x(-1)x = 1, [GRAPHICS] We call this the equitable presentation. We show that y (respectively z) is not invertible in U-q (sl(2)) by displaying an infinite-dimensional U-q (sl(2))-module that contains a nonzero null vector for y (respectively z). We consider finite-dimensional Uq (sl(2))-modules under the assumption that q is not a root of 1 and char(K) not equal 2, where K is the underlying field. We show that y and z are invertible on each finite-dimensional Uq(sl(2))-module. We display a linear operator Omega that acts on finite-dimensional U-q(sl(2))-modules, and satisfies Omega(-1) x Omega = y, Omega(-1) y Omega = z, Omega(-1) z Omega = x on these modules. We define Omega using the q-exponential function. (c) 2005 Elsevier Inc. All rights reserved.
【 授权许可】
Free
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
10_1016_j_jalgebra_2005_07_038.pdf | 158KB | download |