期刊论文详细信息
JOURNAL OF ALGEBRA 卷:298
The quantum algebra Uq(sl2) and its equitable presentation
Article
Ito, T ; Terwilliger, P ; Weng, CW
关键词: quantum group;    quantum algebra;    Leonard pair;    tridiagonal pair;   
DOI  :  10.1016/j.jalgebra.2005.07.038
来源: Elsevier
PDF
【 摘 要 】

We show that the quantum algebra U-q(sl(2)) has a presentation with generators x(+/- 1), y, Z and relations xx(-1) = x(-1)x = 1, [GRAPHICS] We call this the equitable presentation. We show that y (respectively z) is not invertible in U-q (sl(2)) by displaying an infinite-dimensional U-q (sl(2))-module that contains a nonzero null vector for y (respectively z). We consider finite-dimensional Uq (sl(2))-modules under the assumption that q is not a root of 1 and char(K) not equal 2, where K is the underlying field. We show that y and z are invertible on each finite-dimensional Uq(sl(2))-module. We display a linear operator Omega that acts on finite-dimensional U-q(sl(2))-modules, and satisfies Omega(-1) x Omega = y, Omega(-1) y Omega = z, Omega(-1) z Omega = x on these modules. We define Omega using the q-exponential function. (c) 2005 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jalgebra_2005_07_038.pdf 158KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次