期刊论文详细信息
| JOURNAL OF ALGEBRA | 卷:369 |
| Proportion of cyclic matrices in maximal reducible matrix algebras | |
| Article | |
| Brown, Scott2  Giudici, Michael2  Glasby, S. P.1,3  Praeger, Cheryl E.2,4  | |
| [1] Cent Washington Univ, Dept Math, Ellensburg, WA 98926 USA | |
| [2] Univ Western Australia, Sch Math & Stat, Ctr Math Symmetry & Computat, Nedlands, WA 6009, Australia | |
| [3] Univ Canberra, Fac Informat Sci & Engn, Canberra, ACT 2601, Australia | |
| [4] King Abdulaziz Univ, Jeddah 21413, Saudi Arabia | |
| 关键词: Cyclic matrix; Density; Reducible matrix algebra; MEAT-AXE; Upper and lower bounds; Cyclic module; | |
| DOI : 10.1016/j.jalgebra.2012.06.024 | |
| 来源: Elsevier | |
PDF
|
|
【 摘 要 】
Let M(V) = M(n, F-q) denote the algebra of n x n matrices over F-q, and let M(V)(U) denote the (maximal reducible) subalgebra that normalizes a given r-dimensional subspace U of V = F-q(n) where 0 < r < n. We prove that the density of non-cyclic matrices in M(V)(U) is at least q(-2)(1 + c(1)q(-1)), and at most q(-2)(1 + c(2)q(-1)), where c(1) and c(2) are constants independent of n, r, and q. The constants c(1) = -4/3 and c(2) = 35/3 suffice. (c) 2012 Elsevier Inc. All rights reserved.
【 授权许可】
Free
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| 10_1016_j_jalgebra_2012_06_024.pdf | 190KB |
PDF